- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ye, Ruby (3)
-
Wolfe, Benjamin E. (2)
-
Biango-Daniels, Megan (1)
-
Chan, Neal (1)
-
Edwards, Collin B. (1)
-
Lele, Kasturi (1)
-
Louw, Nicolas L (1)
-
Louw, Nicolas L. (1)
-
Nardella, Robert (1)
-
Rokas, Antonis (1)
-
Steenwyk, Jacob L (1)
-
Tomo, Christopher (1)
-
Wolfe, Benjamin E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Mitchell, Aaron P. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Louw, Nicolas L.; Lele, Kasturi; Ye, Ruby; Edwards, Collin B.; Wolfe, Benjamin E. (, Annual Review of Microbiology)For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.more » « less
-
Ye, Ruby; Tomo, Christopher; Chan, Neal; Wolfe, Benjamin E. (, mSphere)Mitchell, Aaron P. (Ed.)Fungi and bacteria are commonly found co-occurring both in natural and synthetic microbiomes, but our understanding of fungal–bacterial interactions is limited to a handful of species. Conserved mechanisms of interactions and evolutionary consequences of fungal–bacterial interactions are largely unknown. Our RNA sequencing and experimental evolution data with Penicillium species and the bacterium S. equorum demonstrate that divergent fungal species can elicit conserved transcriptional and genomic responses in co-occurring bacteria. Penicillium molds are integral to the discovery of novel antibiotics and production of certain foods. By understanding how Penicillium species affect bacteria, our work can further efforts to design and manage Penicillium -dominated microbial communities in industry and food production.more » « less
An official website of the United States government
